Physics Analysis Meeting

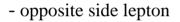
Kétévi A. Assamagan BNL, August 18th 2003

Physics Analysis Meeting Update on Charged Higgs Studies

- b-tagging by jet charge method
- NN study with ATLAST
- Geant3 study with NN or using b-tagging by jet charge method
- The plan

Signal Combinatorial Ambiguity

- gb→tH-
 - H- →tb
 - $t \rightarrow W^+b$
 - $-\bar{t} \rightarrow W\bar{b}$
- After the reconstruction of the 2 top quarks, the remaining b-jet can be paired with either top quark to give 2 charged Higgs candidates: one of these is the wrong candidate giving a combinatorial background
- But the ambiguity is removed if we know the charge signs of the b quarks at production, similar to the situation of CP violation in the B-system


CP violation in B-system

SM prediction of CP-violation A(t) in $B^0_d \rightarrow J/\psi K_s^0$:

$$A(t) = \sin 2\beta \sin(\Delta m_d t)$$

$$B^0_d \rightarrow J/\psi (\rightarrow l^+l^-) K_s (\rightarrow \pi^+\pi)$$

• CP violations studies need determination of B flavor at creation time; in ATLAS used:

- $B-\pi$ correlation
- "jet charge" tag

$$\sigma_m$$
 = 22 MeV σ_R = 64 μm

 $B^0_A \rightarrow J/\psi(e^+e^-)K^0_A$

- Most effective flavor tag performance:
 - $J/\psi \rightarrow e^+e^-$ (lepton tag):

100% efficiency relative to triggered event, 22% mistag probability

-
$$J/\psi \rightarrow \mu^{+}\mu^{-}$$
 (B- π tag):

82% efficiency relative to triggered event, 42% mistag probability

•For asymmetry studies after 1 year of low luminosity (10 fb-1):

	$J/\psi \rightarrow \mu^+\mu^-$	J/ψ→e⁺e⁻
$N(B^0 \rightarrow J/\psi K_s^0)$	160 000	4 800
	S/B ~ 30	S/B ~ 15
δ(sin2β)	0.022	0.031

Uncertainty will be dominated statistics. Systematics from false asymmetries will be measured using channels with 0 CP-asymmetry:

$$B^+ \rightarrow J/\psi K^+$$

Combined $\delta(\sin 2\beta)$ at 10 fb⁻¹ **0.017** (statistical) : comparable to LHCb

2000

1000

Flavor Tagging by "jet charge"

• Use the net charge of the tracks produced near the B meson. This charge is correlated to the flavor of the B meson. Must select tracks likely to belong to b quark fragmentation

$$Q_{jet} = \frac{\sum_{i=1}^{n} q_{i} w_{i}}{\sum_{i=1}^{n} w_{i}}$$

- Re-definition of a b-jet: search for a B-meson in the event and define the b-jet as all the particles in ΔR of the B-track, excluding the B meson
- The 3 tag flavor tagging techniques have being studied for ATLAS: methods optimized by maximizing the quality factor $Q = \epsilon D^2$ (statistical methods). But now, we want to use the B- π correlation or the jet charge on event by event basis and cross check with the standard b-tagging technique.

The Plan

- Study the signal in ATLFAST to see if a likelihood or NN method can be used to remove the combinatorial ambiguity. This study will start soon, slowly.
- Go to full simulation. If the NN analysis does not bring any significant improvement, study the flavor tagging by "jet charge" as a way to resolve the combinatorial problem. 2000 full simulated events are being produced by Alex as a test. Full production of 2x105 events (signal + ttbar) starts afterwards.

Conclusions

- Study H[±]→tb and see if a likelihood or NN analysis can improve the signal selection over the signal combinatorial. This will be done at ATLFAST level.
- If no improvement is expected, a b-tagging by jet charge technique will be investigated as a way to determine the charge signs of the b-quarks at production: this will resolve the combinatorial ambiguity.